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ABSTRACT  

The objective of this program was to discover composition-charge density-property relationships.  
The motivation for this activity derived from density functional theory (DFT), which posits that 
all ground state molecular and solid-state properties are functionals of the charge density. 
Through this program we have demonstrated the feasibility of coupling advanced ab initio 
techniques with physical insight and informatics-based analysis to discover the nature of these 
relationships. The use of ab initio techniques were used to calculate the charge density of metals 
and alloys and reduce the density to physically meaningful parameters. This report describes the 
accomplishments in linking ab initio data with informatics, first in terms of charge density and 
secondly in the related density of states (DOS). By uncovering relationships between the 
structure of the charge density and the elastic response, we have developed chemistry-charge 
density-property relationships.  Similarly, we have (i) identified the features of the DOS which 
govern ground state crystal structure and (ii) “soft modeled” DOS for new alloy systems without 
requiring additional DFT calculations.  We have shown that the charge density descriptors, when 
analyzed within a statistical framework, uncover previously unknown relationships between 
crystallographic structure and charge density. 

 
BACKGROUND 
As is known from density functional theory, the ground state properties of an atomic system are 
determined solely by its charge density.  As mechanical response at typical strain rates is 
dominated by ground state properties, it may be possible to relate features of the charge density 
to specific mechanical properties.  If these relationships could be combined with an 
understanding as to the effect of elemental composition on these electronic features, one could 
manipulate charge density so as to produce desirable properties.  That is, one could design the 
chemistry of solids to yield optimum mechanical response.  This program was designed to test 
these speculations.  Specifically we explored two sets of relationships: first, a set that relates the 
geometry of the charge density to a material’s elastic constants (a measure of a purely ground 
state mechanical property), and second, a set that relates elemental composition to the structure 



  

of the charge density.  Combined, these two sets provide the process-structure-property 
relationships for a new discipline of charge density engineering. 
 
Our approach builds on the quantum theory of atoms in molecules (QTAIM), which has 
demonstrated that the structure of the charge density may be compactly represented by a few 
parameters describing the density around specific points. This “local approximation” reduces the 
description of a 3D scalar field—the charge density—to that of identifying the locations of the 
specified points and computing the values of shape descriptors at these points.  This program 
used first principle calculations to create databases of charge density descriptors combined with 
physical/chemical arguments to identify meaningful combinations of these descriptors which are 
then subject to statistical and data mining techniques to establish correlations between these 
meaningful descriptors and measured or calculated single crystal elastic constants.   
 
In previous work we have shown that the fcc single crystal elastic constant of simple metals can 
be correlated with the descriptors around a single critical point—the bond point.  This correlation 
was demonstrated by inspection, with the introduction of a geometrically meaningful 
representation of the Hessian tensor in which the ρ11, ρ22, and ρ33 were combined to yield three 
new tensor invariants.  In addition to this representation of the Hessian invariants at a critical 
point, there are many others, such as the Gaussian curvature, G = ρ11ρ22ρ33, and the mean 
curvature or Laplacian, L = ρ11+ρ22+ρ33.  Attempts to extend this correlation between shape 
descriptors and elastic constants to other crystal structures were ultimately frustrated by the fact 
that the elastic constants were not dominated by the shape parameters around a single type of cp 
but around all cps.   In these cases, we needed to look for correlations between elastic constants 
and often more than 20 shape parameters, which could be represented in several different 
meaningful forms.   
 
We made significant progress in both the ab initio and informatics areas in the previous reporting 
periods, with the accomplishments of the two research thrusts fully integrated in the final year of 
the program, as discussed in this report.  The previously reported accomplishments in ab initio 
included: (i) creation of a data set giving the shape parameters at all bcc and fcc transition metals 
at critical points; (ii) calculated the electronic structure of 160 B2 intermetallics and calculated 
their single crystal elastic moduli; (iii) located and calculated the shape parameters for ~80 of 
these compounds; (iv) constructed an empirical model to account for the observed trends in the 
single crystal B2 elastic constants; and (v) created a database of 30 entries to provide initial 
correlations of the effects of composition on shape descriptors. The previously reported progress 
in informatics analyses included: (i) performed a quantitative assessment of correlations between 
topological descriptors from critical points using data dimensionality reduction methods; (ii) 
confirmed that the chosen shape parameters may serve as robust modeling parameters for the 
next stage of the work by demonstrating that they serve as strong classifiers of crystal structure; 
and (iii) captured systematics in the impact of transition metal rare earth chemistry on B2 charge 
density shape descriptors.  



  

 
The goals accomplishments in linking the informatics and ab initio aspects of this program 
which are the focus of this final report are summarized as follows. First, given the complexity of 
critical point data, the challenge is to link the shape of the charge density topology to chemistry 
and property, which represents a significant data challenge.  To address this challenge, we have 
followed a two prong approach, where first we predict elastic moduli as a function of the charge 
density topology, which accomplishes: (i) accelerated prediction of elastic constant data, and (ii) 
reduced the amount of information needed from ab initio calculations.  Given this limited 
knowledge requirement, we then predict the critical point descriptors based only on elemental 
descriptors from the periodic table.  Therefore, the final outcome is that we can predict critical 
charge density values from basic elemental properties, and from these critical charge density 
values we can then predict the mechanical response, thus accelerating the selection of targeted 
chemistries.  Additionally, we have studied the related DOS curves for both fundamental science 
and engineering purposes.  The fundamental aspect of this approach is to answer the century old 
question of: why do metals have their ground state crystal structures?  The engineering objective 
is to predict the DOS of alloys given the DOS of the constituent elements, and then from this 
informatics alloy DOS to extract the moduli.  These integrated ab initio and informatics thrusts 
serve to guide future calculations, modify the chemical search space, and accelerate design of 
new materials for targeted electronic behavior. 

 

Detailed Progress Report – Ab Initio (Lead – Colorado School of Mines) 

(i) Building ab-initio database 

In addition to several small data sets for the pure fcc and bcc transition metals, we completed the 
construction of a large data base of shape descriptors and elastic moduli for intermetallics with 
the B2 (CsCl) crystal structure. We chose to investigate 14 common B2 intermetallics and 128 
RM (R = rare earth elements, M = metallic elements from groups 2, 8-13). These compounds 
were chosen to give a broad range of elastic responses. All calculations were performed with 
VASP using the PBE and PW91 generalized gradient approximations. We proceeded by 
generating the charge density on a 25 point/angstrom mesh, locating the CPs of the charge 
density, and generating the geometric properties of the charge density at those points, using our 
software package TECD. Notably, we discovered that there are two characteristic B2 topologies, 
one with second neighbor B-B bonds only, and one with both second neighbor A-A bonds and 
second neighbor B-B bonds (Figure 1). In both cases there are first neighbor A-B bonds. The 
single type of second neighbor bond topology is more common in this set of compounds. Only 
the 13 materials listed in Table 1 display both A-A and B-B bonds. 
 



  

 
Fig 1: The two bonding topologies of the B2 compounds investigated. The A-B and B-B bonding 
topology is shown left, with turquoise spheres representing both first and second neighbor bond points. 
The A-B, A-A, and, B-B bonding topology is shown right, where the additional B-B bond points are 
shown as blue spheres. 
 
 

Table 1: The B2s displaying both A-A and B-B second neighbor bonding. 
AgHo HgTb 

AgNd RhYb 

AuCd ZnEr 

AuPr ZnHo 

CdLa ZnTb 

HgEr ZnYb 

HgNd  

 
 
 
In addition to calculating charge density we also calculated the elastic moduli of all the B2 
crystals. The single crystal elastic moduli, C11, C12, and C44, were computed from the curvature of 
the internal energy versus strain curves. The strains that resist C11, C12, and C44 are as follows:  
 
(C11) ε11 = ε 22 = γ,  ε33= (1+ γ)-2-1 
(C12) ε 11 = ε 22 = ε 33 = γ 
(C44) ε12 = ε 23 = ε31 = γ 
 



  

In all cases we calculated the internal energy using applied strains ranging from -0.025 to 0.025 
in steps of 0.005. For the common B2 intermetallics, our calculated results agree with published 
experimental (calculated) results (Table 2).  The independent shear constants are C44 and C’ = 
1/2(C11-C12) and the strains resisted by these constants are depicted in Figure2. 
 

 

Fig 2: Strains with non-vanishing εxy (left) and εxx = -εyy (right). The arrows represent the strain and the 
red dotted lines the nodes of that strain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

Table 2: A comparison of ab initio elastic properties of selected B2 intermetallics (this study) with the 
available reported data. 
 

Phase C11(GPa) C12(GPa) C44(GPa) A 

CuZr 139.2 
137.3 
138.0 

111.4 
108.9 
112.0 

44.7 
44.9 
45.0 

3.604 
3.160 
3.462 

TiZn 140.7 
140.6 
143.5 

107.2 
106.2 

99.0 

97.0 
99.2 
94.0 

5.791 
5.767 
4.225 

NiTi 176.5 
179.5 
183.0 
178.2 

156.1 
156.4 
146.0 
147.6 

46.8 
49.5 
46.0 
49.0 

4.582 
4.291 
2.487 
3.202 

AlZr 145.4 
145.7 

85.2 86.2 27.1 
29.8 

0.901 
1.000 

CuZn 121.7 
123.4 
124.0 

110.3 
110.9 116.0 

80.7 
84.3 
79.0 

14.211 
13.480 

AgMg 80.9 
79.8 

56.6 
55.5 

47.4 
47.8 

3.893 
3.930 

AgZn 97.1 
97.3 

88.7 
88.0 

51.8 
54.0 

12.40 
11.54 

AgCd 78.3 
76.8 

74.9 
72.7 

44.5 
45.1 

25.77 
22.27 

AuZn 123.7 
124.1 

113.9 
113.5 

44.0 
46.8 

8.969 
8.830 

AuCd 93.2 
91.8 

91.6 
89.9 

38.4 
39.6 

45.17 
42.75 

AlTi 150.3 
150.9 

96.2 
97.6 

68.4 
70.1 

2.526 
2.630 

NiAl 210.1 
207.0 

135.8 116.4 115.9 
106.8 

3.127 
3.172 

PtTi 203.8 
203.3 

181.2 
182.2 

46.9 
48.5 

4.137 
4.592 

PdTi 169.8 
168.6 

150.3 
150.4 

44.7 
45.9 

4.585 
5.049 

CuY 115.0 
114.3 
116.4 
116.0 

47.6 47.1 47.4 
47.7 

35.8 
36.7 
34.5 
31.9 

1.062 
1.065 
1.000 
0.934 

AgY 98.1 
96.1 

105.3 
102.4 

53.3 51.9 50.3 
54.5 

35.5 
35.7 
37.2 
32.6 

1.587 
1.615 
1.353 
1.361 

 
 
 



  

Of the 142 B2 intermetallics for which the electronic structure was calculated, we were able to 
obtain reliable geometric charge density descriptors for 73 (Table 3). Our qualitative 
understanding is rooted in determining how the charge density responds to an applied strain, i.e. 
the nature of the charge flow or redistribution.  Ideally, we would describe this charge flow using 
bond bundles [1, 2]. The B2 structure is characterized by only two types of bond bundles and as 
charge flows from one it must flow into the other, which makes the analysis of quantities that go 
as the ratio of bond bundle properties simpler to rationalize than those related to the absolute 
value of bb properties.  One such property is the elastic anisotropy, A = 2C44/(C11-C12).  Hence, 
we began our development of a qualitative understanding of elastic response by attempting to 
correlate elastic anisotropy with critical point shape descriptors. Figure 3 shows the bond points 
of the common B2 structure. The crystal is composed of 8 first neighbor bond bundles, one 
connecting the central atom to each vertex, and 6 second neighbor bond wedges, one connecting 
the central atom to each face. By symmetry the nuclei of the bond bundles are pinned, along with 
the cage points. Ring points can, however, move in the (100) plane in the <110> direction, as 
shown in the lower panes of Fig. 3. Only movement of the ring point changes the volume of the 
bond bundles. We can then use the distance between the ring point and the first neighbor bond 
point as an indicator of the volume of the first neighbor bond bundle. Finally, we can get an 
approximation of the charge in the bond by multiply this distance by the number of electrons at 
the bond point. 
 
 
Table 3: The chemical formula of the B2 intermetallics with reliable charge density descriptors. 

 
AgDy AuCd CdDy CdYb HgHo IrYb RhTb 

AgEr AuDy CdEr CuDy HgLa PdDy RhY 

AgGd AuEr CdGd CuEr HgNd PdEr RhYb 

AgHo AuGd CdHo CuGd HgPr PdHo ZnCe 

AgLa AuHo CdLa CuHo HgSm PdYb ZnDy 

AgNd AuNd CdNd CuTb HgTb RhDy ZnEr 

AgPr AuPr CdPr CuY HgY RhEr ZnGd 

AgSm AuSm CdSm HgDy IrEr RhGd ZnHo 

AgTb AuTb CdTb HgEr IrHo RhHo ZnLa 

AgY AuY CdY HgGd IrY RhSm ZnSm 

ZnTb ZnY ZnYb     

 
 

 



  

 
Fig 3: The edges of a first neighbor (left) and second neighbor bond bundle (right) in a B2 material. 
Bond points are shown as turquoise, rings as red, and cages as yellow spheres, while bond paths are 
shown as gray cylinders in the top to panes. The unit cell is composed of 8 1st neighbor bond bundles 
and 6 second neighbor bond wedges (half a bond bundle). The lower two panes show the cross section 
of the bond bundles with arrows indicating the directions the ring points can move. The 
semitransparent ring points also illustrate these directions.  
 
 
We would expect that as this rough measure of charge increases the elastic anisotropy decreases 
because as the amount of charge in the first neighbor bonds increases so does the charge flow 
from/to those bonds. Fig. 4 supports this assumption. It is a plot of the distance between the ring 
and first neighbor bond point (in fractional coordinates) multiplied by the charge at the bond 
point versus the elastic anisotropy. From the above correlation we conclude that the Guassian 
curvature at the second neighbor bond points (cage points) correlates with C’, but when we 
attempt to correlate C44 with eignevalues of H(cp) (or invariants of H(cp)), we find no good 
correlations. This observation is probably due to the fact that the charge flow to/from the CPs 
under strains with non-vanishing εxx = -εyy occurs along the principal directions, whereas under a 
strain with non-vanishing εxy the charge flow is not along a principal direction. Such a 
phenomenon has, to our knowledge, not been reported. The simplest possible measure of this 
flow would be given by the curvature along the ring-bond ridge, as it is the direction of charge 
flow.  
 
 
  



  

 
Fig 4: Plot of normalized distance (distance/lattice constant) between the ring point and 1st neighbor 
bond point multiplied by the charge density at the 1st neighbor bond point versus the calculated elastic 
anisotropy  (2 C44/(C11-C12). The normalized distance serves as an approximation of the volume of the 1st 
neighbor bond bundle. 

(ii) Generalized Bonding Model 

Just as a two-dimensional surface may be triangulated, a three dimensional volume, such 
as the charge density, may be covered by a set of irregular tetrahedra sharing faces edges 
and vertices. The resulting system is called a simplical complex. Being tetrahedral, the 
irreducible bundle forms a simplical complex over the charge density. In this unique 
form, the 1-skeleton or underlying graph of the simplical complex takes on special 
meaning. The 1-skeleton of a 3D simplical complex is the union of all the tetrahedral 
edges, which in this case is the set of all the system’s 1-ridges and by default includes the 
bond-path, which is a 1-ridge connecting adjacent charge density maxima through a (3, -
1) saddle point. Thus, the underlying graph contains as a subset the molecular graph 
common to depictions of the bonding in molecules and solids. Our conjecture is that the 
entire underlying graph (1-skeleton), as a set of pairwise connections between charge 
density critical points, provides an excellent quantitative representation of the bonding 
and elastic properties in a molecule or solid.   
 
As a step in confirming this conjecture, we modeled inter-critical point spring constants 
by investigating crystalline systems. Our first effort was to recover the Cauchy pressure 
for the BCC transition metals, knowing only information about the charge density and its 
Hessian at the non-nuclear critical points.  We started with the nonmagnetic BCC 
transition metals because, of the common crystal structures, only the BCC structure 



  

possesses the simplest possible topology with one symmetry unique nuclear, bond, ring 
and cage CP and hence (the minimum) six different 1-ridges. We adopt the notation 
kcp1cp2 to denote the spring constant of the link joining cp1 to cp2, where a cp can be n, b, 
r, or c for nuclear, bond, ring and cage respectively. Thus, kbr corresponds to the spring 
constant of the bond to ring CP connection.   

As with all cubic crystals, the elastic response of this entire set of springs is tied to three 
independent elastic constants: C11, C12, and C44 giving:   

C11 = Va 
-1/3 

(0.67 knb +6.80 knr +2 knc +13.96 kbr +7.31 kbc +14.56 krc)  

C12 = Va 
-1/3  

(0.67 knb +1.60 knr +0 knc +8.76 kbr +3.31 kbc +1.69 krc)  

 C44 = Va 
-1/3  

(0.67 knb +1.60 knr +0 knc +5.67 kbr +1 kbc +0.80 krc)  

 

where Va is the atomic volume.  Note that the quantity C12 − C44, (the Cauchy pressure), is 
a function of only three spring constants   

  C12 − C44 = Va 
-1/3 

(3.10 kbr +2.31 kbc +0.89 krc),         

where all terms related to connections with the nuclear cp have dropped out.  

Systems where the Cauchy pressure is zero are indicative of, “atoms interacting through a 
central force potential,” which includes simple spring like connections and accounts for 
the fact that connections with the nuclear cp have dropped out. Positive deviations reflect 
“metallic bonding,” which necessitates corrections involving “many body interactions that 
result when an atom interacts with the electron gas of its neighbors.” Negative Cauchy 
pressures derive from “covalent bonding character” and require angular corrections.  Our 
task reduced to finding relationships between the shape of the charge density at the 
connected critical points and the intercritical point spring constants.mGeometric and 
physical intuition suggested that the parameters of interest would be given the charge 
density at a critical point, ρ, and an angle, θ, related to the eccentricity of the charge 
density about the critical point, giving four descriptors for each intercritical point spring 
constant.  
 

(iii) Energetic Materials  

A picture of impact sensitivity based on the bond bundles of the electron charge density 
has been developed, which includes the response of both inter- and intramolecular 
bonding interactions. Impact sensitive materials were found to have closed intramolecular 
bond bundles with a low electron count that serves as a trigger linkage, while insensitive 



  

materials do not. The shape and electron count of the intramolecular bond bundles was 
found to change between the gas phase and solid state due to the formation of 
intermolecular bonds. In the case of polynitrobenzenes this change was subtle and did not 
affect the trigger linkages. However, the intermolecular bonds in crystalline RDX 
transform the C-N trigger linkages found in the gas phase to N-N trigger linkages in the 
solid state. This observation offers a theoretical justification of the well-known 
experimentally observed differences in the decomposition of gas phase and crystalline 
RDX.    

(iv) Critical Point Input into Informatics Analysis 

 
Table 4. A list of descriptors for electronic charge density topology of 
intermetallic materials. These values were calculated for the B2 intermetallics 
listed in Table 3.  These descriptors were analyzed by informatics for developing 
structure-property relationships, where the property is based on the elastic 
moduli. 
 

No. Descriptor Description 
1 λ1_bb Eigenvalue 1 at the bond-bundle critical points 
2 λ2_bb Eigenvalue 2 at the bond-bundle critical points 
3 λ3_bb Eigenvalue 3 at the bond-bundle critical points 
4 ρbb Charge at the bond-bundle critical points 
5 tan(θ)bb (λ2_bb / λ1_bb)1/2 
6 ∆_bb Laplacian (=λ1_bb + λ2_bb + λ3_bb) 
7 λ1_b Eigenvalue 1 at the bond critical points 
8 λ2_b Eigenvalue 2 at the bond critical points 
9 λ3_b Eigenvalue 3 at the bond critical points 
10 ρb Charge at the bond critical points 
11 tan(θ)b (λ2_b / λ1_b)1/2 
12 ∆_b Laplacian (=λ1_b + λ2_b + λ3_b) 
13 λ1_c Eigenvalue 1 at the cage critical points 
14 λ2_c Eigenvalue 2 at the cage critical points 
15 λ3_c Eigenvalue 3 at the cage critical points 
16 ρc Charge at the cage critical points 
17 ∆_c Laplacian (=λ1_c + λ2_c + λ3_c) 
18 λ1_r Eigenvalue 1 at the ring critical points 
19 λ2_r Eigenvalue 2 at the ring critical points 
20 λ3_r Eigenvalue 3 at the ring critical points 
21 ρr Charge at the ring critical points 
22 ∆_r Laplacian (=λ1_r + λ2_r + λ3_r) 
23 f1 Electron density flatness (=ρc

min/ρb
max) 

24 f2 Energy term related to stacking fault (=(ρb − ρc)2) 
25 f3 Energy term related to surface (=(ρb + ρc)2) 
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(i) Genetic Programming for QSPRs  

Genetic programming is an approach that has been applied for optimizations in many 
engineering fields such as process control.  We apply it for the first time to ab initio 
derived data to predict the elastic constants of transition metals as a function of critical 
point shape descriptors.  This work serves two purposes: (i) QSPR can be used to screen 
for material properties and accelerate the identification of new candidate materials; and 
(ii) the terms in the QSPR model provide physical understanding of material behavior that 
otherwise is too complex to identify.  
  
We have used genetic programming [2] to obtain a function of the charge density shape 
descriptors which gives the spring constants of the intercritical point connections. GP is 
an evolutionary algorithm based on the ideas of biological evolution, designed to evolve 
computer programs that optimize a user-defined function. The objective is to create a 
population of possible solutions to the problem. The members of the population are 
evaluated using a fitness function (in this case the mean of the squared prediction errors 
for each of the five BCC metals) that measures how good the functions are in predicting 
the desired quantity (Cauchy pressure) from the (shape) descriptors.   
  
A genetic programming search was conducted for a function that would express the spring 
constant between two critical points as a function of four variables mentioned above. 
Certain constraints were imposed on the function, such as maintaining symmetry and 
simplicity of the model to make physical interpretation possible. The fitness function was 
set to the mean of the squared deviations of the predicted value of Cauchy pressure from 
the value calculated through DFT. Two different function forms were found that obeyed 
the defined criteria and were highly accurate:  

Function 1:  

.      

Function 2:  

      

Function 1 is optimized for simplicity and predicts the Cauchy pressure with more than 
97% accuracy. A slightly better accuracy of prediction (98.6%) is possible with Function 



  

2, though at the cost of the simplicity of the relation between the spring constant and the 
critical point descriptors. The plots for the predicted and actual Cauchy pressure 
calculated through DFT are presented in Figure 5.   

  

  
  

Figure 5. Genetic programming prediction of Cauchy pressure versus the DFT 
predicted Cauchy pressure for bcc transition metals.  The model optimized for 
simplicity has 97.3% accuracy, while the model optimized for accuracy has 98.6% 
accuracy.    

Our analysis of these two functional forms provides insight as to the origin of the 
intercritical point spring constant.  The Cauchy pressure goes to zero when the charge 
density takes on a shape resulting from the overlap of spherically symmetric densities. 
This “reference state,” though built from overlapping spherical charge densities, will likely 
be characterized by a BCC topology with nonzero values for all the shape descriptors of 
the observed systems.   

If we assume the tails of these overlapping spherical charge densities go as e−αr. It is then 
an easy matter to calculate the values of the reference quantities as functions of α. While 
the reference quantities, ρ and θ, vary with α, kcp1cp2, as calculated be either Function 1 or 
Function 2, vary more slowly and are close to zero.  The compelling conclusion is that the 
inter-critical point spring constants provide information about the amount of charge that 
flows from a CP in its reference state to yield the same CP in the observed state; a number 
of functional forms may scale with the “distance” between these two states.    



  

If we are to generalize this work to different topologies, we must identify a true invariant 
of overlapping spherical charge densities, or, a best method to estimate the values of the 
shape descriptors for the reference state of given element in a given crystal structure.    

(ii) Design Rules for New Intermetallics  

The predictions of mechanical property as a function of charge density has been extended 
to intermetallic compounds, with elastic constants predicted as a function of 25 shape 
descriptors.  Additionally these descriptors are used to predict the stability of a 
compound; that is, to predict whether a new material could form in a particular crystal 
structure.  These results have been tested on known systems, while future work will 
expand this work to suggest new candidate materials.  

We found that the predictive models achieved by correlating topological charge density in 
terms of critical points with elastic constants discloses the hidden structure-property 
relationships that cannot be identified from crystallographic information. The results for 
prediction of the elastic constants from the charge density critical points are provided in 
Figure 6. Our results demonstrate that charge density topology data of a material system 
contains the information required for the prediction of elastic constants of a new material.  



  

 

Figure 6. Prediction of elastic constants based on a partial least squares 
regression model of 73 intermetallic compounds. The accuracy of this approach 
demonstrates the ability to predict mechanical properties for alloys.  

 

 

 



  

In addition to predicting mechanical properties, we have developed a series of design 
rules for predicting mechanical stability of new compounds, building on the ability to 
define mechanical properties as a function of critical point descriptors.  For a cubic 
crystal, the following three conditions are generally accepted as the elastic stability 
criteria:  
 

(i) Bulk modulus, K = 1/3(C11 + 2C12) > 0  
(ii) Shear modulus, G = C44 > 0  
(iii) Cprime = 1/2(C11 – C12) > 0  

 
If all of these three conditions are not met simultaneously, the cubic crystal is 
(mechanically) unstable. The charge density data were correlated with the stability 
condition using a recursive partitioning algorithm. As a result, if-then rules of stability 
criteria were developed as shown in Figure 7. Only five critical point descriptors were 
selected for building the tree model, indicating that those five descriptors are the defining 
factors for the determination of stability condition for B2 compounds. Starting from the 
root node of the if-then tree structure, the stability of a new material can be predicted. 
According to the internal validation of the model, R2=0.8526 was obtained. This shows 
that the elastic stability of a material can be predicted directly from the electronic charge 
density information of the material.  
 

 

Figure 7.Classification tree model for the prediction of the stability of B2 compounds in 
terms of the critical points of topological charge density; the numbers shown at the end of 
each branch indicate the number of potential new compounds classified into each branch.   



  

  

(iii) Identification of Minimal Electronic Structure Information  

One of the primary objectives of informatics is to identify the minimal amount of information 
necessary for describing a material. To this end, we have applied principal component analysis 
(PCA) and variable importance parameter (VIP) in identifying the parameters which are most 
important in describing electronic structure.  By identifying the fewest parameters needed to 
model the elastic moduli from the charge density topology, the informatics modeling of these 
parameters becomes manageable, as discussed in the next section. 

To identify the aspects of the charge density topology which most impact the elastic constants, 
VIP was applied to the complete set of parameters describing the CPs for the intermetallic 
compounds.  The results of Figure 8 show that all of the CP descriptors are not equally 
significant for the estimation of elastic constants. Additionally different CP descriptors affect the 
different constants, and therefore different topological features of electronic structure play the 
major role in determining the mechanical behaviors.  The most significant descriptors, which are 
defined as those having ‘Variable Importance’ measures greater than unity, are then used with 
predictive informatics – partial least squares (PLS) - to develop the QSARs.  For C11, 17 
variables meet the importance criteria, 21 variables for C12, and 11 variables for C44.  Of these 
variables, charge at the cage critical points is very significant for C44, shape at the ring critical 
points is very significant for C12, and charge at the ring critical points and the energy term related 
to the surface have significance for all of the elastic constants, and therefore also anisotropy and 
Cauchy pressure. These findings for the B2 intermetallics are much different than the descriptor 
(charge around bond critical point) previously discussed as controlling the FCC mechanical 
behavior.  While charge at bond critical point is significant for all three constants, it has 
relatively minor effect as compared to other descriptors.  A heat map was created for the 
descriptor data base to further select the relevant descriptors based on further selection criteria 
(Figure 9).  Based on this further selection criteria, all relevant descriptors were identified (Table 
5).  We identify based on the descriptors identified as determining elastic constants, C11 and C44 
are determined by the charge density at the critical points, while C12 is determined by the shape 
at the critical points. 
 



  

 
 

Figure 8. The importance measure of topological charge density descriptors with 
respect to the elastic constant of intermetallic compounds, which is obtained by 
variable importance in the projection (VIP) scores for the key predictor selection. 
The cut-off value of VIP is unity. 1. λ1_bb; 2. λ2_bb; 3. λ3_bb; 4. ρbb; 5. tan(θ)bb 
(=(λ2_bb / λ1_bb)1/2); 6. ∆_bb (=λ1_bb + λ2_bb + λ3_bb); 7. λ1_b; 8. λ2_b; 9. λ3_b; 10. ρb; 
11. tan(θ)b (=(λ2_b / λ1_b)1/2); 12. ∆_b (=λ1_b + λ2_b + λ3_b); 13. λ1_c; 14. λ2_c; 15. 
λ3_c; 16. ρc; 17. ∆_c (=λ1_c + λ2_c + λ3_c); 18. λ1_r; 19. λ2_r; 20. λ3_r; 21. ρr; 22. ∆_r 
(=λ1_r + λ2_r + λ3_r); 23. f1 (=ρc

min/ρb
max); 24. f2 (=(ρb − ρc)2); 25. f3 (=(ρb + ρc)2) 

 
 

 



  

 
 

Figure 9. Heat map and dendrograms for the descriptor space of Table 1 and the 
corresponding elastic constants.  This figure maps out the correlation between 
the descriptors and demonstrates the complexity of the input data base, thus 
demonstrating the necessity of data mining.  From this map, we identify 
additional descriptors that were not identified through VIP.  The additional 
descriptor potentially relevant for modeling the elastic constants are shown in 
Table 2.  
 
 
 
 
 
 
 
 
 
 
 
 



  

Table 5. A list of descriptors identified as most significant for the respective 
elastic constants using VIP and heat map.  The descriptors defined as most 
important are based on their selection by both methods.  When considered in 
magnitude of importance, we find that the charge at the bond critical point (ρb), 
the shape at the ring critical point (λ2_r), and the charge at the cage critical point 
(ρc) dictate C11, C12, and C44, respectively. 

 
 

  C11 C12 C44 

VIP pb, pc, pr, f3 λ2r, f2, f3 pc, pr, f1, f3 

Heat 

map f3 ∆r, λ3b pbb, pr, pb 

Selected pb, pc, pr, f3 

f2, f3, λ2r, 

λ3b, ∆r 

pb, pc, pr, 

pbb, f1, f3 

 

 

(iv) Informatics Modeling of Critical Point Descriptors 

From the developed quantitative structure-property relationship (QSPR), the charge at the bond 
critical points (ρb), the shape at the ring critical points (λr), and the charge at the cage critical 
points (ρc) were identified as the most important features for determining C11, C12, and C44, 
respectively (Table 5 and Figure 10).  While that work accelerated the selection of chemistries 
for targeted elastic behavior, it still required the DFT calculation of the critical point descriptors.  
To address this limitation, we use an informatics based approach to “learn” the mathematics of 
the DFT calculation and predict these critical point values for thousands of chemistries in 
seconds.  Thus this work developed the use of informatics for approximating the complex 
mathematics of DFT, and is used for targeted charge density and elastic behavior design. The 
input into the analysis is shown in Table 6, with the results of the descriptor inputs shown in 
Figure 11. From this analysis, we identified the minimum number of elemental descriptors 
required to describe the charge density topology and the mechanical response.   
   
 
 
 
 



  

 
Figure 10. The elastic constants (C11, C12, and C44) were modeled as a function of 
charge density critical points.  Using a variable importance in the projection approach to 
identify the most critical charge density descriptors for each elastic constant, and then a 
partial least squares analysis of these descriptors, the controlling charge density features 
were identified.  For C11 charge at the bond critical point was most important, for C12 
shape at the ring critical point was most important, and for C44 charge at the cage 
critical point was most important.  We now predict these three critical points as a 
function of the elemental components of the intermetallics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

Table 6. Input into the PLS analysis.  The first three columns are the DFT calculated 
critical point descriptors. 
 

 
 
 
 
 
 

Element A Element B 

A 
( \( ' Pseudopcte 

Pauling Density@ 
Pseudopote 

Pauling Density@ 
ntial core 

electronega 
Melting A tome 

293 K 
ntial core 

electronega 
Melting Atomic 

293 K 
radii sum Point (K) Wei{trt radii sum Point (K) Weigti 

TMRE charge b eig2 r dlarge c R=rG+r 
tiuity (g.tm') 

R=r ~+r 
tivity (glcrn") 

AgCa 0.09953 0.146708 0.05047 2.375 1.93 1235.08 107.8El32 10.5 3 1 1112 40.078 1.55 

Agl 0.12461 0.157876 0.042866 2.375 1.93 1235.08 107.8El32 10.5 1.585 2.66 336.7 126.90447 4.93 

AgMo 0.3>21.39 0.21.8766 0.165314 2.375 1.93 1235.08 107.8El32 10.5 2.72 2.16 2890 95.94 10.22 

AgSc 0.167966 0.23196 0.090283 2.375 1.93 1235.08 107.8El32 10.5 2.75 1.36 1814 44.95591 2.989 
Ag1i 0.178147 0.137461 0.131953 2.375 1.93 1235.08 107.8El32 10.5 2.58 1.54 1933 47.88 4.54 

AgW 0.230246 0.272657 0.173413 2.375 1.93 1235.08 107.8El32 10.5 2.735 2.36 3680 183.84 19.3 

AgY 0.151633 o.2oso17 0.076263 2.375 1.93 1235.08 107.8El32 10.5 2.94 1.22 1795 88.90585 4.469 
KRe 0.119693 0.178391 0.048341 3.69 0.82 336.8 39.0983 0.862 2.68 1.9 3453 186.207 21.02 
KW 0.108844 0.124221 0.051475 3.69 0.82 336.8 39.0983 0.862 2.735 2.36 3680 183.84 19.3 

MnMg o.2o1237 0.074334 0.034449 2.22 1.55 1517 54.93805 7.44 2.03 1.31 922 24.305 1.738 
MnSc 0.213869 0.191127 0.139318 2.22 1.55 1517 54.93805 7.44 2.75 1.36 1814 44.95591 2.989 

MnW 0.37021.2 0.025284 0.252333 2.22 1.55 1517 54.93805 7.44 2.735 2.36 3680 183.84 19.3 

MnY 0.191783 0.21734 0.114336 2.22 1.55 1517 54.93805 7.44 2.94 1.22 1795 88.90585 4.469 
MoSc o.2o3182 0.193447 0.1412o5 2.72 2.16 2890 95.94 10.22 2.75 1.36 1814 44.95591 2.989 

MoSr 0.136147 0.150869 0.073498 2.72 2.16 2890 95.94 10.22 3.21 0.95 1042 87.62 2.54 
MoY 0.191951 0.17474 0.11486 2.72 2.16 2890 95.94 10.22 2.94 1.22 1795 88.90585 4.469 
NbOs 0.363461 0.094869 0.213102 2.76 1.6 2741 92.90638 8.57 2.65 2.2 3327 190.23 22.59 

NbRe 0.360153 0.012579 0.21.5449 2.76 1.6 2741 92.90638 8.57 2.68 1.9 3453 186.207 21.02 

NbY 0.170374 0.123322 0.114401 2.76 1.6 2741 92.90638 8.57 2.94 1.22 1795 88.90585 4.469 
NiSc o.2o5023 0.288946 0.116457 2.13 1.91 1726 58.6934 8.902 2.75 1.36 1814 44.95591 2.989 

NiY 0.181377 0.271383 0.096722 2.13 1.91 1726 58.6934 8.902 2.94 1.22 1795 88.90585 4.469 

PdSc 0.199427 0.364942 0.101276 2.45 2.2 1825 106.42 12.02 2.75 1.36 1814 44.95591 2.989 
PdY 0.1802o7 0.328806 0.083401 2.45 2.2 1825 106.42 12.02 2.94 1.22 1795 88.90585 4.469 

PtSr 0.142257 0.334238 0.048756 2.7 2.28 2045 195.08 21.45 3.21 0.95 1042 87.62 2.54 

PtY o.2o336 0.419897 0.083722 2.7 2.28 2045 19508 21.45 2.94 1.22 1795 88.90585 4.469 



  

 
 
Figure 11. Weights of the PLS model, standardized based on different units of inputs.  As 
can be seen, the shape descriptor is much different than the charge descriptors (opposite 
sign for multiple descriptors), while the two charge descriptors are similar, particularly 
for the transition metal.  To accelerating the modeling of the charge density topology, we 
predict those descriptors with high magnitude weight, and remove those descriptors with 
low weight. 
 
 
 
Using this reduced descriptor space from VIP analysis of the high-dimensionality charge 
density description, we applied partial least squares (PLS), a predictive informatics 
approach which accounts for multi-collinearity in high dimensional data, we predicted the 
charge density critical points, which we showed in Figure 6 can then be used to model the 
elastic moduli.  The results of this prediction is shown in Figure 12. 
 
 
 
 
 
 
 
 



  

 

 
 
Figure 12. Result of the PLS analysis.  Based on the input descriptors, the charge at the 
bond and cage critical points were modeled with high accuracy, demonstrating that 
informatics was able to accurately model these aspects of the charge density without 
requiring any additional DFT calculations.  However, the accuracy for the shape 
descriptor was insufficiently accurate, implying that the controlling physics is different 
than it was for the charge.   
 
 
 
 
 



  

In Figure 12, we found that the elemental descriptors of Figure 11 were sufficient for 
modeling the charge density at the critical points.  However, for modeling the shape at the 
critical points, these descriptors were insufficient.  Through further informatics analysis, 
we found that to model the shape at the critical points, the elemental work functions must 
be added.  When the work function is included, the accuracy of the prediction of shape 
improves by over 50% (Figure 13).   
 
 
 

 
 
Figure 13. Improvement in prediction of λ2r by adding work function into the predictor 
set. Accuracy improved from 60% to 90%.  The difference between charge density at the 
critical points and shape of the charge density topology of the critical point is described 
by the work functions of the constituent elements. 
 
 
We can thus predict the elastic moduli from the critical point descriptors and we can now model 
the critical point descriptors from descriptors of the elements comprising the alloy.  Based on 
this, we can now predict the electronic structure and mechanical response of ‘virtual’ materials 
based only on information from the periodic table. This work significantly accelerates the 
targeted design of new materials based on electronic structure design. 

 

 (v)Accelerated Design Based on Density of States 

From the DOS spectra, and particularly from the symmetry induced d-orbital splitting, of each 
transition metal in each of bcc, fcc, and hcp structure (provided by the CSM group), we have 
applied informatics methods to these d-orbital splittings to predict the ground state structure of 
the transition metals (Figure 14).  The prediction based on pattern recognition and partial least 
squares regression is found to work very well for this class of material.   
  



  

 

Figure 14.Informatics prediction of ground state crystal structure of second row 
transition metals.  The model predicts crystal structure from a DOS input of each 
element in three structures:  fcc, bcc, and hcp structures.  The red squares are elements 
used in training the model, while the blue diamonds are elements which were not 
included in building the model but were used instead for external validation.    

 

Building on this structural modeling from DOS curves, we use the approach to model 
unknown DOS spectra using artificial neural networks (ANN).  Using an input of DOS of 
Fe, Ni, Pd, Fe3Ni, FeNi3, Fe3Pd, and FePd3, a model linking these elemental DOS to 
multi-component alloys was developed.  This model is then tested using other known 
alloy DOS not used in model development. The necessary input to model these systems 
are the DOS spectra for Fe (FCC), Pd (BCC) and Ni (BCC).  Also DOS spectra of two 
alloys in each system were introduced so that the learning technique can capture the 
nature of the interactions of elements within alloys. Along with the DOS spectra of the 
elements of the binary systems, the DOS spectra of two chemistries of each binary system 
were used to train the model. The model was tested for FePd and FeNi (Figure 15), which 
were not included in any form in training of the model, but were used solely for testing 
the accuracy of the model. Figure 15 shows these DOS spectra with the prediction 
compared to DFT. The model for predicting DOS of alloy systems shows a level of 
accuracy, with the general shape of the DOS curve captured but the fine structure is not 
fully captured. The model therefore links the elemental DOS with the alloy DOS.  Of 
particular note is that crystal structure is not explicitly defined in this analysis.  The only 
description of the alloy necessary is the stoichiometry.  For the results shown, the input 
for FexNiy was x Fe and y Ni, while similarly for FexPdy the input was x Fe and y Pd .  
However, this prediction quality is comparable with the other techniques for modeling 
multi-component systems without need of describing the atomic interactions, but with 
more applicability by not requiring an input Hamiltonian, and is sufficient for 
representing the significant features of the DOS curve. Additionally, this level of 
accuracy is particularly notable given the limited amount of input information needed. As 



  

most elemental DOS are known, this approach then allows us to model DOS of any 
chemistry and stoichiometry.  

In these results, the accuracy of the model is comparable to that for the training 
systems, indicating that our model is not over-fitting the data.  The crystal structures for 
these systems were not input into the model, but we still capture the interactions 
accurately.  For FeNi and FePd, the crystal structure type is L10, while for FeX3 and Fe3X 
(X=Pd, Ni), the crystal structure type is L12.  Capturing the general shape of the DOS 
curves indicates that ANN is able to extract the electronic interactions from the elemental 
DOS, and is able to represent the form of these electronic interactions in multi-component 
systems. 

 
 

 

=

 
 

Figure 15. Testing of DOS modeled for FePd and FeNi using the trained ANN.  These two 
chemistries were not included in the development of the ANN model, and serve as 
validation sets of the approach.  The accuracy of the test DOS is comparable with the 
training DOS, indicating that we have avoided an over-fitting of the data, and the model 
is applicable for other stoichiometries of the elements.  
 
  
 Using the developed logic, the bulk modulus of the training and test systems were 
predicted (Figure 16).  From this figure, we find that the logic is capable of predicting 
bulk modulus from the DOS spectra with high accuracy.  Additionally, the model predicts 
bulk modulus well for both the training and test systems, indicating that our model is not 
over-fitting the training data.  The input for the test systems was only ANN modeled 



  

DOS, with no input of bulk modulus.  The accuracy of this result validates that the level 
of detail of the ANN model is sufficient for describing the alloys.  This work, combined 
with the work on charge density topology, shows the value of informatics analysis of ab 
initio calculated data. 
 
 
 
 

 
 

Figure 16. The result of the approach for predicting bulk modulus from an input of alloy 
DOS spectra.  The diamonds correspond to DOS calculated by DFT while the squares 
correspond to DOS modeled via ANN.  The bulk modulus of the training systems was used 
to train the model, while the bulk modulus of the test systems was not used in any form in 
developing the model.  The accuracy of the results demonstrates that bulk modulus is 
clearly represented within the DOS spectra, and that it can be quantitatively extracted via 
statistical learning.  Additionally, the accuracy of the bulk modulus predicted for the test 
systems indicates that the ANN approach for modeling DOS is sufficiently detailed and 
accurate. 
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